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ABSTRACT Microbial communities play key roles in ocean ecosystems through 
regulation of biogeochemical processes such as carbon and nutrient cycling, food web 
dynamics, and gut microbiomes of invertebrates, fish, reptiles, and mammals. Assess­
ments of marine microbial diversity are therefore critical to understanding spatiotempo­
ral variations in microbial community structure and function in ocean ecosystems. With 
recent advances in DNA shotgun sequencing for metagenome samples and computa­
tional analysis, it is now possible to access the taxonomic and genomic content of 
ocean microbial communities to study their structural patterns, diversity, and func­
tional potential. However, existing taxonomic classification tools depend upon manually 
curated phylogenetic trees, which can create inaccuracies in metagenomes from less 
well-characterized communities, such as from ocean water. Herein, we explore the utility 
of deep learning tools—DeepMicrobes and a novel Residual Network architecture—that 
leverage natural language processing and convolutional neural network architectures 
to map input sequence data (k-mers) to output labels (taxonomic groups) without 
reliance on a curated taxonomic tree. We trained both models using metagenomic reads 
simulated from marine microbial genomes in the MarRef database. The performance of 
both models (accuracy, precision, and percent microbe predicted) was compared with 
the standard taxonomic classification tool Kraken2 using 10 complex metagenomic data 
sets simulated from MarRef. Our results demonstrate that time, compute power, and 
microbial genomic diversity still pose challenges for machine learning (ML). Moreover, 
our results suggest that high genome coverage and rectification of class imbalance are 
prerequisites for a well-trained model, and therefore should be a major consideration in 
future ML work.

IMPORTANCE Taxonomic profiling of microbial communities is essential to model 
microbial interactions and inform habitat conservation. This work develops approaches 
in constructing training/testing data sets from publicly available marine metagenomes 
and evaluates the performance of machine learning (ML) approaches in read-based 
taxonomic classification of marine metagenomes. Predictions from two models are 
used to test accuracy in metagenomic classification and to guide improvements in ML 
approaches. Our study provides insights on the methods, results, and challenges of 
deep learning on marine microbial metagenomic data sets. Future machine learning 
approaches can be improved by rectifying genome coverage and class imbalance in 
the training data sets, developing alternative models, and increasing the accessibility of 
computational resources for model training and refinement.

KEYWORDS metagenomics, machine learning, marine microbiology

M icrobial community profiling in marine ecosystems is essential to our understand­
ing of how microbes interact and respond to changes in their environments, 
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for end-to-end marine ecosystem modeling (1) and for informing habitat management 
and conservation (2). Community DNA shotgun sequencing (metagenomics) 
facilitates the characterization of the diversity, abundance, and functional potential of 
microbial communities from diverse habitats. The assignment of taxonomic labels to 
short metagenomic reads is useful for the profiling and comparison of microbial diversity 
and composition across metagenomic libraries. Various tools, including Centrifuge (3), 
Kaiju (4), Sourmash (5), and Kraken2, (6) have been developed to accurately and quickly 
assign metagenomic reads to microbial taxa. These tools identify unique nucleotide 
sequences (k-mers) from each metagenomic read and map them to reference genomes 
with nodes on the taxonomic trees curated by the National Center for Biotechnology 
Information (NCBI). Reliance on a curated taxonomic tree optimizes read classification 
for microbial taxa with well-defined lineages, such as those in the human gut (7, 8); 
however, these algorithms may not be sufficient for classification of complex microbial 
communities in ecosystems where many microbial taxa remain to be characterized, such 
as those in marine habitats (9).

Machine learning (ML) is a promising alternative approach for read-based taxonomic 
classification that circumvents the requirement for a taxonomic tree, due to its ability 
to handle complex data-heavy prediction problems without a priori knowledge. Deep 
learning (DL) is a branch of ML that uses a many-layered (i.e., deep) structure. This 
allows complex tasks to be learned as a stack of modules that recognize increasingly 
abstract concepts (10). DL models can be complicated to build and time-consuming 
to train but have successfully solved otherwise intractable problems (11). For example, 
certain DL algorithms have been shown to improve upon classic taxonomic classification 
tools because they are able to classify new genomes that are not yet characterized in 
NCBI, thereby improving the percentage of classified sequences in a metagenome and 
reducing the number of sequences incorrectly predicted (7). Certain types of neural 
networks in DL, such as artificial neural networks and architectures with a foundation 
in image analysis, have been borrowed to explore DNA sequence-based applications 
(12). For example, convolutional neural network (CNN) architectures have been used 
in host phenotype prediction (13) and gene identification in sequenced genomes (14). 
CNNs are the most utilized of the DL architectures with the added benefit of training 
faster natural language processing (NLP) models that are more adept at learning the 
patterns of language and words (15). NLP-based methods appear to be better suited 
for metagenomics since nucleotide sequences can be processed as words and are less 
amenable to representation as images (16). For example, NLP-based methods that use 
filters to slide off DNA “sentence” matrices have been applied for genomic binning 
(17), viral sequence identification, and phenotypic classification for cancer reads (18). DL 
applications for taxonomic classification have been explored to some degree for NLP (19) 
and CNN architectures (20) but have not yet been widely applied (7).

Here, we investigated whether deep learning models could outperform tree-based 
prediction approaches in standard tools like Kraken2 (6) for read-based taxonomic 
classification from metagenomic libraries sequenced from marine habitats, which 
typically have high microbial diversity (21). Specifically, we first re-trained DeepMicrobes, 
a NLP-analogous DL model that leverages k-mer embedding to create a custom genetic 
code “dictionary” in order to learn the relationship between the input sequence reads 
(k-mers) and output labels (taxonomic classifications) without an input phylogenetic tree 
(22). For this study, we used parameters of the best-performing DeepMicrobes algo­
rithm, which was found to be a bidirectional long short-term memory (bi-LSTM) model 
with self-attention mechanism and k-mer embedding, implemented in the TensorFlow 
library (22). With this architecture, DeepMicrobes was reported to outperform standard 
tools when trained exclusively on the human-specific reference (HGR) database of gut 
metagenomes. When trained on the HGR data set at a model confidence threshold 
of 0.5, DeepMicrobes could obtain a precision and recall of 0.969/0.866. Here, DeepMic­
robes was re-trained and optimized in order to develop taxonomic classification models 
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specific for marine metagenomes, which have markedly higher microbial diversity than 
human gut metagenomes (8, 21).

Recognizing that DL models such as DeepMicrobes are hindered by slow training 
and prediction times, we also built and tested a CNN architecture as an alternative 
approach for taxonomic classification. Specifically, we selected the Residual Network 
(ResNet) model, since it is a well-known and effectively scaled CNN architecture (23). 
Results from both models were used to explore how metrics such as percent genome 
coverage, GC (guanine-cytosine) content, count of species samples in training, and the 
class distribution in training set might impact ML classification performance on marine 
metagenomics data.

MATERIALS AND METHODS

Training, testing, and validation data sets

Taxonomic and sequence data from version 1.6 of the MarRef database (24, 25) was 
used both to simulate metagenomic reads for taxonomic classification and as a source 
of artificial marine metagenomes for model training, testing, and validation. We selected 
the best-performing model architecture and embedding (k-mer embedding) from the 
prior DeepMicrobes research, in order to limit time and computational power. MarRef 
is a manually curated marine microbial reference database containing fully sequenced 
genomes (24, 25). A total of 1,271 genomes of marine prokaryotic species were retrieved 
from MarRef to develop the training, testing, and validation data sets. For each genome, 
we extracted the Genome Taxonomy Database (GTDB) (26) genus and species classifica-
tion from the MarRef database’s metadata file. Records without GTDB classifications were 
manually queried against GTDB release 07-RS207 to retrieve their taxonomic classifica-
tions. Of the 1,271 MarRef genomes, four records had undefined GTDB taxonomy due to 
failed quality checks and were dropped from the data set. The remaining 1,267 genomes 
(27) were used for model training and testing.

Training and testing data sets were created using methods described by Liang et al. 
(22) (Fig. 1). For each genome, 10,000 forward and 10,000 reverse reads were simulated 
with the ART Illumina read simulator (7) version ART-MountRainier-2016-06-05 using 
the following parameters: 150 bp read length (-l 150), 400 bp mean insert size (-m 
400) with 50 bp standard deviation (-s 50), and HiSeq 2500 error model (-ss HS25). 
Different random seeds were used for the training set (rs 747) and the testing set (rs 
808). Simulated reads were randomly trimmed from the 3’ end to generate variable 
read lengths between 75 bp and 150 bp in equal probability, using the random_trim.py 
script available in the DeepMicrobes repository (https://github.com/MicrobeLab/Deep­
Microbes). For training and prediction with DeepMicrobes, read sequences and their 
accompanying genus or species labels were converted to the binary TensorFlow 
format using DeepMicrobe’s tfrec_train_kmer.sh script for the training data, while read 
sequences without label data were converted to TensorFlow format using DeepMicrobe’s 
tfrec_predict_kmer.sh script. Jellyfish v1.1.11 (4) was used to construct a comprehensive 
12 bp k-mer vocabulary for DeepMicrobes from 47,894 genomes from GTDB release 202 
(26), since the 12 bp k-mer model was the best performing in the original manuscript. 
For performance comparison, the default parameters of CAMISIM v1.3 (28) were used 
to perform 10 separate read simulations from the 1,267 MarRef genomes, with random 
seeds different from those used in the training and testing sets. Simulated reads were 
then combined at random proportions by CAMISIM to create 10 blind metagenomic data 
sets (Fig. 1).

Deepmicrobes implementation

For this study, we used the best-performing parameters from the original DeepMicrobes 
algorithm (22), which was trained on microbial genomes from the human gut, to re-train 
our deep learning models for species and genus classification from marine metagenomic 
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reads. Due to computational resource limitations, other models and parameters explored 
by the original DeepMicrobes algorithm, including those based on one-hot encoding, 
were not re-evaluated in this study.

The models were constructed using Deep Neural Networks implemented in the 
TensorFlow Python library. Each 12-mer was mapped to a k-mer embedding vector, 
and all vectors were concatenated into a 2D matrix that is processed by bi-LSTM. A 
self-attention mechanism was applied between the bi-LSTM and three fully connected 
(dense) classifiers with rectified linear unit (ReLu) activations in between. The first two 
layers contain 3,000 units each, and the final layer uses a softmax function that outputs 
class probabilities for each species (n = 914) or genus (n = 515). The model was optimized 
with the Adam Optimizer, which minimizes the distance (cross-entropy loss) between the 
output probabilities and the ground truth.

Training was performed using the DeepMicrobes.py script and accelerated using a 
NVIDIA v100 graphics processing unit (GPU). Each model was trained one epoch at a 
time due to the wall time limitation imposed by the server (4 days). During hyperpara­
meter tuning, different batch sizes (1,024, 2,048, 4,096, 10,000), learning rates (0.0005, 
0.005, 0.01, 0.001), dropout rates (0.5, 0.9, 1.0), and learning rates of decay (0.001, 0.05, 
0.01, 0.1, 0.5) were varied. Each parameter-adjusted model was trained for one epoch, 
and performance of each model was compared using the accuracy and cross entropy 
generated during training. A full grid search varying all parameters together was deemed 
infeasible due to lack of compute power, and regardless, results indicate that parameter 
tuning did not have a large impact on model accuracy. The hyperparameter screen was 
used to compare DeepMicrobes model results in order to select the best model, and later 
sections only used the hyperparameter-optimized models (batch size: 4,096; learning 
rate: 0.05; dropout rate: none; learning rate of decay: 0.001) for further performance 
comparison with standard tools.

Model performance metrics

We used well-documented classification metrics (29) to evaluate the performance of 
our optimized models in predicting microbial genus or species. Metrics used inclu­
ded precision, recall, true positive rate, false positive rate, and Matthews correlation 
coefficient (MCC) (30):

FIG 1 Overview of data preparation and machine learning pipeline. (1) Full-length genome records and their metadata were downloaded from MarRef v1.6. (2) 

A k-mer DNA vocabulary was built using the genomes in the GTDB database. We used a k-mer vocabulary of 12 base pairs. (3) Testing and training sets were 

created using the ART simulator, generating 10,000 forward reads and 10,000 reverse reads from each microbial genome, then randomly trimming the reads, 

and then converting into TensorFlow record format. (4) Blind data sets were created using CAMISIM, which randomly generates metagenomic data sets from the 

MarRef genomes. Each model’s performance was evaluated using the 10 blind metagenomic data sets.
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Precision = TPTP + FP Recall = TPTP + FN TPR = TPTP + FN FPR = FPFP + TN
MCC = TN × TP − FN × FP(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP is true positive, TN is true negative, FP is false positive, and FN is false 
negative. Precision and recall are standard ML metrics used to measure model perform­
ance. MCC was used as a cutoff to identify microbes that were consistently predicted 
incorrectly in the test set, as MCC is only high if the classifier is doing well on both 
negative and positive elements.

To assess the performance of our optimized genus/species models on metagenomics 
data, we additionally calculated the percentage of reads predicted correctly (% accuracy) 
and the percentage of reads that can be assigned to a genus/species (% characterized) at 
different model CTs:

% AccuracyCT = # reads predicted correctlyCT
total # readsCT

% CharacterizedCT = total # readsCT
total # reads

Kraken2 read classification

The performance of our optimized genus/species classification models was compared 
with the performance of Kraken2 using the blind metagenomic data sets. Kraken2 is 
a widely used k-mer-based taxonomic classification tool that maps each k-mer to a 
lowest common ancestor using information from a curated taxonomy tree (6) with high 
accuracy and speed. Kraken2 was one of the tools that performed best in a comparison 
of machine learning and k-mer-based taxonomic classification methods for metagenom­
ics (6, 22). Kraken2 v2.1.2 was used to assign taxonomy to metagenomic reads in the 
blind data sets using MarRef v1.6 as the reference database. Whole-genome FASTA 
files (n = 1,267) were downloaded (24, 25) and concatenated, and FASTA headers were 
updated to contain NCBI taxids, according to the Kraken2 manual. The database was 
built using the commands kraken2-build --download-taxonomy, kraken2-build --add-to-
library, and kraken2-build --build. Sequences were classified using the command Kraken2 
with options --paired, -- use-names, and --threads 24. A blind data set of 333,120 
sequences (99.94 Mbp) was processed in 2.469 s. Species-level reports were generated 
using Bracken version 2.7 (31). The performance of Kraken2 was evaluated by percent 
accuracy and percent characterized, as described above.

Calculation of percent coverage of reference genome

Bowtie2 v2.4.5’s bowtie-build command was used to generate a reference database 
containing all 1,267 MarRef genomes from the training set. Trimmed simulated reads 
used for training were mapped to this reference database using the following parame­
ters: -p 12 (number processors), -f (FASTA files format), and –no-unal (repress unaligned 
reads). Samtools v1.9’s view and sort commands were used to generate a sorted binary 
alignment map file, and the mpileup command was used to retrieve the total number of 
bases with at least 1× coverage, according to the online guide (32). Percent coverage was 
calculated by taking the total number of bases with a mapped fragment in the training 
set divided by the total length of the reference genome. Our shell script can be found at 
https://github.com/helloftroy/MarRef_DeepMicrobes.

CNN implementation

We also explored the utility of a ResNet CNN architecture for the taxonomic classification 
of marine microbial reads. CNN has the potential to train faster than NLP models like 
DeepMicrobes, and ResNet is a well-utilized and effectively scaled CNN architecture (23). 
We created a subset of the training data set by randomly selecting 10% (~530,000) of 
all FASTA sequences, and created a training split (80%), a validation split (10%), and 
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a test split (10%) from the subset. All data manipulation was performed on a NVIDIA 
Rapids version 22.10 GPU, after converting the FASTA files to a Rapids DataFrame. We 
utilized a parquet format for reading and writing and observed substantial accelerations 
in data processing. k-mer sampling of 1-mers, 3-mers, and 12-mers were tested in 
different ResNet models. Notably, the original DeepMicrobes found a 12-mer sampling 
performed best; however, we expected the CNN’s convolution mechanism should be 
able to more aptly capture complex relationships between neighboring values, and we 
initially deemed a 1-mer may even be sufficient for our model. The 3-mers and 12-mers 
were created by applying a rolling window of 3 or 12 to the original one-dimensional 
(1D) input, leading to input shapes of 1-mer (1, 150, 1), 3-mer (148, 3, 1), and 12-mer (139, 
12, 1).

For the CNN, we began with the ResNet-50 architecture because of its popularity and 
known effectiveness for classification tasks. Each of our ResNet models was modified 
to take a 1D vector. Our baseline model contained ~24.8 million trainable parameters, 
and takes a 1 × 150 vector as input (Fig. 2a). The input vector represented a nucleo­
tide sequence, where each possible base (A, C, G, T) is encoded and represented by 
an integer. Sequences with fewer than 150 bases were zero-padded (right side) to a 
length of 150. We then adjusted the ResNet baseline by varying the number of trainable 
parameters. Specifically, we trained smaller versions of the ResNet with ~6.7 million (Fig. 
2b), ~36,000 (Fig. 2c), and ~32,000 (Fig. 2d) parameters. Notably, these models changed 
the number of layers from 50 (baseline) to only 6 (ResNet-smaller-3).

Next, we altered the input shape of the data. We adjusted the input 1 × 150 vector by 
applying a rolling window of 12 to the vector and transformed it into a 139 × 12 matrix. 
We tested two versions of this approach, one where the convolution kernel size was 1 × 3 
(the same as our baseline) (Fig. 2e), and one where the convolution kernel size was 3 × 3 
(Fig. 2f). We also tested a variation of the ResNet-smaller-3 architecture where the first 
convolution kernel size was 1 × 3 (rather than 1 × 7) with a stride of 1 (rather than 2) and 
omitted the maxpool layer (Fig. 2g). Finally, we tested a version of the ResNet-smaller-3 
architecture that applied a sliding window of 3 to the input vector to make a 148 × 3 
matrix, the first convolution kernel size was 3 × 3 (rather than 7 × 7) with a stride of 1, the 
maxpool layer was omitted, and the convolution kernel size was 1 × 3 (Fig. 2h).

For all cases, the hyperparameters were kept constant (batch size: 1,024; epochs: 3; 
learning rate: 0.0003; inner-layers activation: ReLU; batch-norm momentum: 0.6; batch-
norm scale: false; batch-norm center: true; batch normalization epsilon: 1e-8; last-layer 
activation: softmax; number of classes (species): 912; optimization algorithm: Adam; loss 
function: categorical cross entropy; metric: categorical accuracy).

RESULTS

DeepMicrobes hyperparameter tuning indicates high confidence threshold 
and low epoch number is needed for best precision and recall

To train an optimal DeepMicrobes model, we varied the learning rate, rate of decay, 
dropout rate, and batch size for one epoch each (2.5- to 4-day training time) (Fig. S1). We 
found that the cross-entropy loss and accuracy were optimal with a learning rate of 0.005 
but were unaffected by changes in dropout probability and learning rate decay (Fig. S1). 
We also found that lower batch size improved performance but can increase training 
time, often prohibitively if the training set is large (Fig. 3d and e). For all further training, 
we selected a learning rate of 0.001 (default), decay rate 0.05, and no dropout rate 
(default), with a batch size of 4,096 that did not impede training time.

We next tested how the read-level confidence threshold (0–100) and number of 
epochs (3, 7, 10) impact the model’s precision/recall (Fig. 3c; Fig. S2). Thresholds of 0 and 
60 are shown to illustrate how the model metrics change as the model’s confidence is 
increased (Fig. 3c) and the threshold of 60 in particular is shown because it leads to a 
peak in precision/recall (0.92/0.901) (Fig. 4d). As confidence threshold increased for each 
model, the precision/recall transitioned from a linear spread between 0 and 1 to a tight 
distribution approaching 1, as reads predicted with low confidence were dropped. We 
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FIG 2 Convolutional neural network model with ResNet architecture. Numbers in bold indicate which variables were changed between architectures. 

(a) Baseline ResNet-50 architecture, with 24.8 million trainable parameters. Modified ResNet with (b) 6.7 million trainable parameters, (c) 36,000 trainable 

parameters, and (d) 32,000 trainable parameters. (e–h) Alternative tested ResNet architectures with adjusted input data shape after application of size 12 rolling 

window, with kernel size (e) 1 × 3 and (f) 3 × 3. (g,h) Variation on ResNet-smaller-3 with a stride of 1, the second maxpool layer omitted, and with a convolutional 

kernel size 1 × 3 (g) or with a transformed 148 × 3 input matrix (h).
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plotted the precision and recall for each microbial species at two different thresholds (0, 
60), where each point represents a microbial species. For the best-performing model 
trained with three epochs (S-3E-60; species-3 epoch-60 threshold), we observed an 
increase in precision/recall between confidence thresholds 0 (0.39/0.36) and 60 
(0.92/0.90) (Fig. 3a and b). Our results indicate that a high confidence threshold is needed 
to consistently obtain good performance. Interestingly, the highest precision/recall was 
found by the model trained with the least number of cycles (S-3E-60) at threshold of 60, 
but decreased at longer training time. Longer training appears to deteriorate perform­
ance, possibly due to overfitting. Meanwhile, at 0 confidence, the precision/recall 
increased only 0.1%–0.5% between epochs 3 and 10.

Kraken2 outperforms DeepMicrobes when benchmarked with blind data sets

We benchmarked the performance of our best-performing species and genus classifica-
tion models (S-2E, S-3E, G-2E, G-3E; species 2 and 3 epoch, genus 2 and 3 epoch) against 
Kraken2 using 10 simulated blind metagenomes that contain random proportions of 
reads from the MarRef genomes. The models were compared using read-level accuracy 
and % reads characterized (Fig. 4). At confidence threshold 0, each model’s accuracy was 
between 0.42 and 0.48; however, as the confidence threshold increased, accuracy 
increased to near one but percent of reads characterized decreased substantially. Indeed, 

FIG 3 Hyperparameter tuning, epoch, and confidence threshold impacts on DeepMicrobes read-level prediction. (a and b) DeepMicrobes species model trained 

for three epochs at (a) 0 and (b) 60 confidence threshold. Each point represents a microbial species. As confidence increases, so do both precision/recall until 

nearly all microbes are predicted correctly. (c) Table illustrating how the number of epochs influences precision and recall. (d and e) Cross entropy and training 

accuracy, respectively, for hyperparameter tuning of four different batch sizes (1,024, 2,048, 4,096, 10,000). Batch size refers to the number of reads the model 

uses before updating its weights; A smaller batch size effectively allows the model to update its weights more frequently. Additional hyperparameter tuning can 

be found in (Fig. S1).

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.05237-22 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

17
 O

ct
ob

er
 2

02
3 

by
 1

92
.1

11
.1

23
.2

41
.

https://doi.org/10.1128/spectrum.05237-22


we found the highest count of reads predicted correctly was at 0 confidence, using the 
G-2E-0 model (0.48 accuracy, 100% characterized reads) (Fig. 4a and b).

Next, using the G-2E-0 model, we tested all 10 blind sets, and found that the accuracy 
and percent characterized had little variation (maximum standard deviation ±5%) (Fig. 
4c). We found G-2E-0 precision never exceeded 0.65 and recall 0.35 (Fig. 4d). The 
abundance was calculated by dividing the number of reads from a genus by the total 
number of reads in the data set. It appears that as genus abundance increases, the 
precision also increases. Interestingly, no pattern was discerned for recall, which indicates 
the model could detect microbial presence no matter the abundance (Fig. 4f). Notably, 
each of our models showed lower average percent characterized and accuracy, no matter 
the confidence threshold (Fig. 4a), than Kraken2 (0.92, 0.70).

DeepMicrobes performance on various microbial taxa

The original DeepMicrobes model was trained exclusively on human gut bacterial 
genomes, referred to as the HGR data set (22). Our results suggest that the DeepMicrobes 
marine (MarRef )-trained model showed lower accuracy than the prior human gut model 
(0.65 vs 0.96). Understanding possible explanations for this discrepancy is important 
to improve further DL models and to improve the data set preparation before model 
training. We calculated the MCC for each microbe in our test data set, with microbes 
below 0.5 MCC taken to be consistently mispredicted. All 10 genera mispredicted at 
confidence threshold 60 were correctly predicted at the family level (Fig. 5). Notably, in 
the G-2E-60 model, 30% of misclassified microbes were assigned as the actinomycete 

FIG 4 The performance of DeepMicrobes compared to Kraken2. (a) DeepMicrobes top four performing models across all confidence thresholds. A taxonomy 

prediction for accuracy and % characterized for 10 blind metagenomes using (b) Kraken2 and (c) DeepMicrobes top performing model (G-2E-0) across all 

confidence thresholds. In (b), each diamond is a blind set, and in (c), the bars indicate the standard deviation between blind sets. Notably, blind set 7 had 

markedly lower accuracy and percent characterized for Kraken2; upon further investigation, we found 42% of missed or mispredicted microbes were the 

Actinoalloteichus genus. (d) Precision (purple) and recall (green) for optimal model (G-2E-0). The precision increases and recall decreases as the confidence 

threshold increases, as expected. However, noticeably, there is a peak and decrease in precision at confidence threshold between 0.45 and 0.80, and precision 

never exceeds 0.65. (e) Average % characterized and average accuracy for 10 Kraken blind sets. Averages for DeepMicrobes are highly dependent on the 

confidence threshold. (f) DeepMicrobes precision and recall (G-2E-0) as a function of genus abundance, using the first blind data set as a representative example. 

Precision appears especially impacted by the genus abundance in the data set.
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genus Streptomyces. Similarly, for the species model, ~25% of misclassified microbes 
were predicted to be S. albidoflavus, and ~33% were predicted to be Streptomyces 
species. Reads that were mispredicted as Streptomyces did not have a discernable pattern 
in taxonomy but included Amycolatopsis and Nocardiopsis among others (Fig. 5).

DeepMicrobes performance was positively correlated with genome coverage 
in the training set

To evaluate whether performance differences between the DeepMicrobes gut and 
marine models was affected by the input genomes, we compared the HGR and MarRef 
data sets used for training. We noticed average genome size in the MarRef data set was 
larger than the average genome size in the HGR data set (4.1 vs 2.5 Mbp). However, 
the average number of genomes represented in each genus was lower than the MarRef 
data set compared to the HGR data set (3.1 vs 20.7) (Fig. 5). Moreover, we noticed 
microbes below 0.5 MCC in our G-2E-60 model often had a genome size >6 Mbp, and 
all 10 mispredicted genera had only one genome/genus for training (Fig. 5). Lastly, 

FIG 5 DeepMicrobes results suggest that certain taxa are consistently poorly predicted. Number of species (a, b) and genera (c) with MCC <0.5; (a, b) 

show total number of species at the genus level. MCC is a balanced statistic we use to discern which microbes are consistently mispredicted. (d) Incorrectly 

predicted microbes assigned labels and other genomic data for G-2E-60. (e) Genomic data comparison between HGR and MarRef genomes. Notably, all genomes 

mispredicted for the genus models have only one representative genome in MarRef for the model to train on; many also have long genome length and high GC 

content. The species mispredictions have long genome length and high GC content.
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we observed that though the average GC content was similar between both database 
genomes (0.48), many MarRef genus with <0.5 MCC had high GC content (0.52–0.72).

We used the blind metagenomic data sets to test the effects of GC content, genome 
length, and number of genomes per genus on model accuracy. Notably, we saw no 
relationship in GC content. However, genome size and number of genomes per genus 
were negatively and positively correlated, respectively, with model accuracy, though 
the R-value was not high (0.199, 0.27) (Fig. 6a through c). We hypothesized that the 
genome subsampling in the training set (10,000 forward reads and 10,000 reverse reads) 
might not be adequate in capturing genetic variations in large genomes. To test this, 
we calculated the % genome coverage of the training set by mapping the trimmed 
simulated reads back to their reference genome. We identified a positive correlation 
between % coverage and model accuracy (R-value 0.40) (Fig. 6d). The larger, light blue 
outliers in Fig. 6d have low coverage but high accuracy and also tend to have more 
genome samples to train upon per genus. This suggests that increasing the number of 
genomes per genus in training can partially rectify any detrimental effects originating 
from a low genome coverage in training. The same analysis with Kraken2 results for 
the blind data sets (Fig. S3) found no clear impact from GC content, length of genome, 
number of genomes per genus, or genome coverage. Instead, Kraken2 results cluster 
most genera with a perfect classification of 1.0 accuracy, with a few genera having 
complete misprediction at 0.0 accuracy.

FIG 6 Accuracy of DeepMicrobes is positively associated with genome coverage and number of genomes per genus in training but not GC content. The color 

and size represent the average number of genomes per genus, and each point corresponds to a genus. Correlations between model accuracy and (a) genome 

length, (b) GC content, (c) number of genomes per genus, and (d) % genome coverage to reference genome. In (d), accuracy differences are described best by % 

genome coverage (R-value 0.4) and appear also to be impacted by the number of genomes per genus.
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Initial benchmark testing using convolutional neural network ResNet models

A new ResNet CNN architecture was tested to measure if performance could be 
improved and to expand upon the functionality of ML in taxonomic classification. Like 
for DeepMicrobes, we used all 915 species classes for the CNN training, and randomly 
subsampled the data set to be 10% of reads per species because the full data set was 
too computationally burdensome to train a model in a reasonable amount of time. Our 
baseline ResNet-50 model achieved accuracy of only 0.3/0.01 for training/validation at 
three epochs, but the architecture with reduced size (ResNet-smaller-3) saw an elevated 
validation accuracy of 0.132 at two epochs (Fig. 7). Interestingly, after three epochs, 
ResNet-smaller-3 accuracy increased for training (0.21) but dropped for validation data 
sets (0.018). We also found that ResNet-smaller-3–2D-12w validation accuracy dropped 
from 0.132 to 0.116 between epochs two and three, while ResNet-smaller-3-1D-3w-alt 
maintained 0.132 accuracy for all three epochs. Notably, no model architecture could 
achieve accuracy higher than 0.132. Full results for all CNN models that we tested are 
given in Table S1. The decrease in accuracy seen in multiple models, similar to the 
DeepMicrobes results, suggests the models are being overfit, perhaps memorizing the 
training examples rather than learning how to correctly categorize reads for species 
identification.

FIG 7 ResNet architecture results for all models using sample of MarRef genomes. (a) Training accuracy and (b) validation accuracy for different ResNet 

architectures.
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DISCUSSION

This research explored whether DL can handle the complexity of marine metagenomes 
for read-based taxonomic classification. We found that Kraken2 outperforms each 
ML model developed in this study. This might be because Kraken2 computes k-mer 
composition for the entire genome, while DeepMicrobes’ in silico subsampling only 
captures a fraction of the genome. Notably, our results suggest the microbe abundance 
impacts precision. Our model reaches high precision/recall (0.92/0.9) at confidence 
threshold 60 for the testing data, which contained only reads from individual microbial 
genomes, but does not surpass 0.65/0.35 precision/recall on the blind metagenomics 
data containing microbial reads from various genomes in varying abundances.

Our results indicate DeepMicrobes disproportionately misclassifies reads to be 
Streptomyces. Streptomyces genomes are long, with twice as many genes as Escherichia 
coli or Bacillus subtilis (33, 34). Moreover, Streptomyces acquire diverse gene clusters 
from their environment, and gene transfer between species is prolific (33, 34). Indeed, 
Streptomyces albidoflavus has a 16S rRNA gene sequence that is 100% identical to that 
of 10 other species of Streptomyces, and there are proposals to reclassify this species 
into multiple new species (35). Taken together, this suggests that DeepMicrobes cannot 
discern between reads from Streptomyces and bacteria whose genomes they have 
accumulated, indicating that bacteria with high levels of horizontal gene transfer might 
be difficult for a ML model to train on.

We also explored how differences in GC content, genome length, number of genomes 
per genus, and percent genome coverage affects model accuracy and found positive 
correlation between percent genome coverage and accuracy. Further analysis on the 
CNN training set indicates that one of the 914 species we tested represents 13.2% 
of the training data. Notably, 13.2% is also the highest accuracy our CNNs achieved, 
suggesting that our model is impacted by class imbalance, and is memorizing the one 
species with disproportionately high reads in the training data. Class imbalance in input 
data for machine learning can severely affect model accuracy because the model may 
“anchor” itself to overrepresented classes during training (36). The model then has high 
recognition of overrepresented classes but mispredicts underrepresented classes during 
testing (37).

In order to explore and visualize the class imbalance in our data set, we created a 
confusion matrix for each species’ TP, FP, TN, and FN for the DeepMicrobes model at a 
60 confidence interval (Table S2). Because the matrix is quite large, we also calculated a 
summation of the TP, FP, TN, and FP by phylum (34 total phyla). From these two tables, 
it is clear that certain microbes far overrepresent the data set, with counts in the tens 
of thousands, while other microbes have fewer than 10 instances. We observed that our 
CNN models were affected by class imbalance, which compounded the apparent issues 
in low genome coverage for certain species. Therefore, in future tests, a balanced training 
set with higher numbers of representative genomes per species/genus may improve the 
model’s performance, albeit at the cost of computational resources.

Unexpected time and compute power hurdles

Time and compute power are important factors in the implementation of read classi­
fication tools and were unanticipated impediments to this research. For example, a 
FASTA to tfrecord conversion took 3–4 h (one genome, 10,000 reads/genomes) and 
training ranged 2.5–4 days (1,272 genomes, 10,000 reads/genomes) for one epoch, 
and prediction scaled with metagenome contig size, preventing prediction on big, 
complex metagenomes. Moreover, the DeepMicrobes software often used 15–38 CPU 
cores despite multiple attempts to constrain its usage. In contrast, Kraken2 was usually 
finished within 30 min for prediction and required no training.

We used our new CNN models to test alternative, faster data processing techniques. 
For the CNN model, we used the NVIDIA Rapids.ai library for GPU access and easy export 
of data in universal file formats (38). Specifically, the Rapids.ai suite uses a combination 
of Rapids Dask and Rapids cuDF to leverage a GPU and speed the preprocessing 
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time by 85% over standard CPUs used by most libraries. Notably, significant lifts in 
data preprocessing speeds were seen because the input data set is quite large and 
the Rapids.ai library speed improvements correlate with data size. In addition, using 
Rapids.ai avoided the time-consuming conversion step from FASTA to tfrecord required 
by DeepMicrobes TensorFlow libraries. Instead, we found the fastest process was to 
convert the FASTA files into parquet format during preprocessing, and then exported the 
data into universal csv format for model training or testing.

Future promise and potential of deep learning: are Transformers the way?

Overall, compared to DeepMicrobes, ResNet CNN models saw promise in read-based 
taxonomic classification, especially in terms of data processing speed-ups. However, 
CNN architectures are typically used for image recognition and therefore are perhaps 
less suitable for genomic classification than architectures that address NLP problems 
such as Transformer models. Transformers are able to identify meaningful patterns of 
sequence data and leverage parallelization to avoid recursion problems to allow for 
faster scaling to large data sets in training. Transformer models have shown success in 
computational genetics, including genome annotation (39), sequence recognition (40), 
and in isolation of genomic features from metadata (41). Additionally, the Transformer-XL 
model can learn dependencies beyond a fixed length, which could increase upon the 
fixed 150 bp length used here. One challenge with the application of Transformers to 
large sequence data sets is the number of “tokens,” the word embeddings that make 
up the vocabulary for the model to train with. Typically, it is recommended that a 
Transformer model not exceed ~50,000 tokens, which would restrict our token (k-mer) 
length to 8-mers, preventing use of smaller and finer-grain token sizes (i.e., 4^8 = 65,536 
tokens). Additionally, in a typical NLP problem, the “words” and the letters in a word 
are pre-determined in the English language. However, in the context of the genome, 
which DNA sequence or length creates meaningful “sentences“s unknown, which makes 
result validation more challenging. Nevertheless, we suggest that in order to obtain the 
full benefits of ML and improve upon standard tools, further research should focus on 
Transformers in classification.

Conclusion

A goal for this research was to develop a read-based taxonomic classification deep 
learning model for marine metagenomics data that might be competitive with existing 
tools that rely on a curated taxonomic tree. We found that DeepMicrobes can suc­
cessfully identify microbial species at high accuracy when characterizing reads from 
individual genomes, but it cannot reach the same accuracy as Kraken2 for complex 
metagenomics data. Despite this, the model shows promise by reaching 60% accuracy, 
even though the input genome reads often only cover a fraction of the reference 
genomes. Future efforts can be made to develop a well-balanced training data set 
with high genome coverage, refine the model, and develop alternative models like the 
Transformer model. More generally, ML approaches are still just beginning to be applied 
to marine omics and environmental DNA data sets, with room for development through 
sustained interdisciplinary efforts.
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